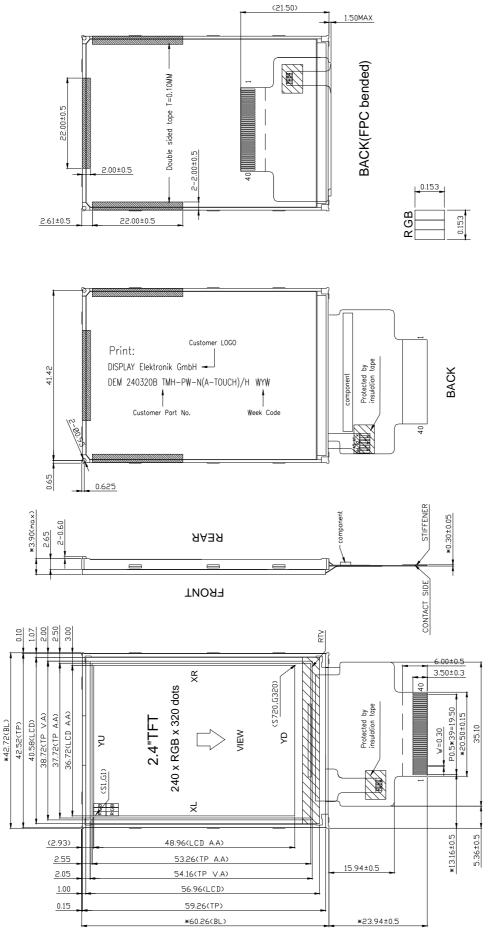



## DEM 240320B TMH-PW-N(A-TOUCH)Production Specification

| Rev.  | Date       | Contents                         | Written | Approved |
|-------|------------|----------------------------------|---------|----------|
| 0     | 17.05.2012 | Preliminary Specification        | WL      | MH       |
| 1     | 22.052012  | Update LED current and luminance | WL      | MH       |
| 2.1.0 | 22.05.2013 | Change TFT-Panel                 | MH      | MH       |
|       |            |                                  |         |          |
|       |            |                                  |         |          |
|       |            |                                  |         |          |
|       |            |                                  |         |          |
|       |            |                                  |         |          |
|       |            |                                  |         |          |
|       |            |                                  |         |          |
|       |            |                                  |         |          |
|       |            |                                  |         |          |

#### **Revise Records**


Special Notes

| Note1. |  |
|--------|--|
| Note2. |  |
| Note3. |  |
| Note4. |  |
| Note5. |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |

## CONTENT

- 1. LCM DRAWING
- 2. GENERAL DESCRIPTION
- 3. MECHANICAL SPECIFICATIONS
- 4. ELECTRO-OPTICAL CHARACTERISTICS
- 5. BLOCK DIAGRAM
- 6. ELECTRONIC CHARACTERISTICS
- 7. PINS DESCRIPTION
- 8. INSTRUCTION DESCRIPTION
- 9. BACKLIGHT PARAMETERS
- **10. PRODUCT QUALITY & RELIABILITY**
- **11. PRECAUTIONS IN USING**
- **12. APPLICATION**
- 13. CLASSIFICATION INFORMATION
- 14. HISTORY OF VERSION

## **1. LCM DRAWING**



## **2. GENERAL DESCRIPTION**

| MAIN TECHNICS :              | COG                                     |
|------------------------------|-----------------------------------------|
| DISPLAY CONTENT:             | GRAPHIC                                 |
| DISPLAY TYPE:                | 262K COLORS-TFT-NEGATIVE-TRANSMISSIVE   |
| DRIVER METHOD:               | 1/320 DUTY                              |
| <b>VIEWING DIRECTION:</b>    | 12:00                                   |
| CONTROLLER:                  | ILI9325C (ILITEK)                       |
| BACKLIGHT:                   | LED WHITE                               |
| <b>OPEATING TEMPERATURE:</b> | $-20^{\circ}$ C to $+70^{\circ}$ C      |
|                              | 2000                                    |
| STORAGE TEMPERATURE:         | $-30^{\circ}$ C to $+80^{\circ}$ C      |
| INTERFACE:                   | SPI and 8080 Series MPU(8/16-bit)       |
|                              |                                         |
| TOUCH-PANEL:                 | Integrated 4-Wire-Resistive-Touch-Panel |
|                              |                                         |

## **3. MECHANICAL SPECIFICATIONS**

| ITEM             | CONTENT              | UNIT |
|------------------|----------------------|------|
| PIXEL'S NUMBER   | 240 x RGB x 320      | DOTS |
| MODULE DIMENSION | 42.72 x 60.26 x 2.65 | mm   |
| ACTIVE AREA      | 36.72 x 48.96        | mm   |
| PIXEL SIZE       | 0.153 x 0.153        | mm   |

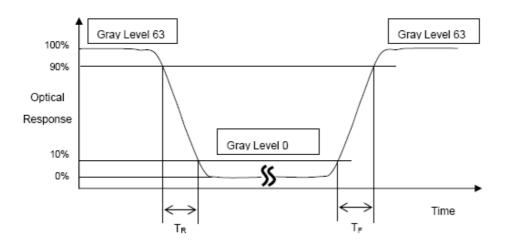
| -                               |           | _              |                   |      |       |      |      |           |
|---------------------------------|-----------|----------------|-------------------|------|-------|------|------|-----------|
| ltem                            |           | Symbol         | Condition         | Min. | Тур.  | Max. | Unit | Note      |
| Transmittance<br>(without Polar |           | T(%)           | _                 | _    | 13.5  | _    | _    |           |
| Contrast Ratio                  |           | CR             | ⊖=0               | 400  | 500   | _    | _    | (1)(2)    |
|                                 | Rising    | T <sub>R</sub> | Normal<br>viewing | _    | 2     | 4    |      |           |
| Response<br>time                | Falling   | T <sub>F</sub> | angle             | _    | 6     | 12   | msec | (1)(3)    |
| Color gamut                     |           | S(%)           |                   |      | 60    |      | %    |           |
|                                 | White     | W <sub>x</sub> |                   | TBD  | 0.308 | TBD  |      |           |
|                                 | white     | Wy             |                   | TBD  | 0.325 | TBD  |      |           |
|                                 | Red       | Rx             |                   | TBD  | 0.630 | TBD  |      |           |
| Color                           | ricu      | Ry             |                   | TBD  | 0.337 | TBD  |      | (1)(4)    |
| chromaticity<br>(CIE1931)       | Green     | Gx             |                   | TBD  | 0.284 | TBD  |      | CF glass  |
| (CIE 1931)                      | Gleen     | Gy             |                   | TBD  | 0.543 | TBD  |      | (C-light) |
|                                 | Dhua      | Bx             |                   | TBD  | 0.143 | TBD  |      |           |
|                                 | Blue      | Ву             |                   | TBD  | 0.120 | TBD  |      |           |
|                                 | Line      | θL             |                   | TBD  | 45    | _    |      |           |
| Vientie en en ele               | Hor.      | θ <sub>R</sub> | 00.10             | TBD  | 45    | _    |      |           |
| Viewing angle                   |           | θu             | CR>10             | TBD  | 45    | _    |      |           |
|                                 | Ver.      | θD             |                   | TBD  | 20    | _    |      |           |
| Optima View D                   | )irection |                |                   | 12 O | clock |      |      | (5)       |

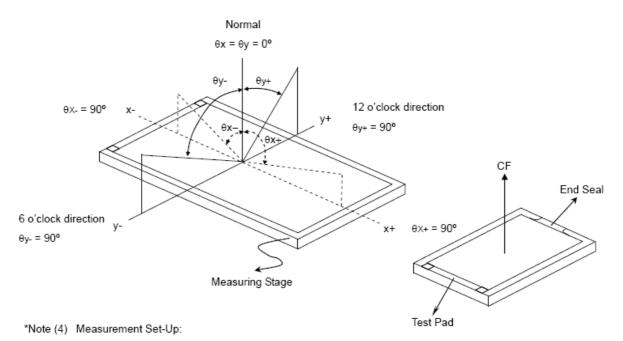
## **4. ELECTRO-OPTICAL CHARACTERISTICS**

\*Note (1)Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

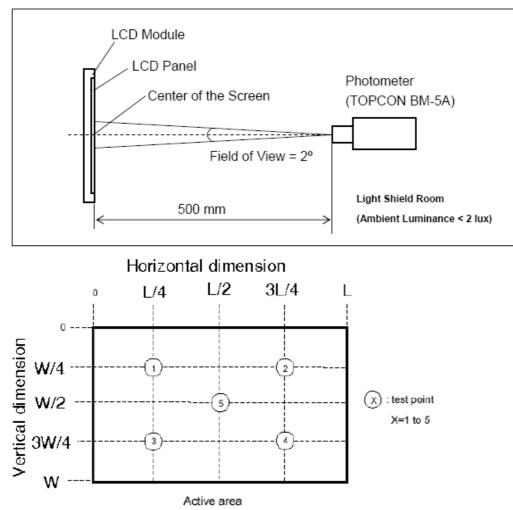
Contrast Ratio (CR) = L63 / L0


L63: Luminance of gray level 63

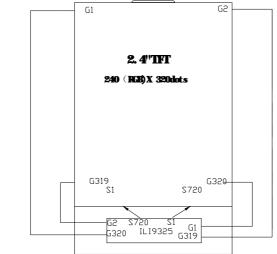

L 0: Luminance of gray level 0

CR = CR(5)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (5).


\*Note (2) Definition of Response Time (T<sub>R</sub>, T<sub>F</sub>):






The LCD module should be stabilized at a given temperature for 20 minutes to avoid abrupt temperature change

during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.



## **5. BLOCK DIAGRAM**



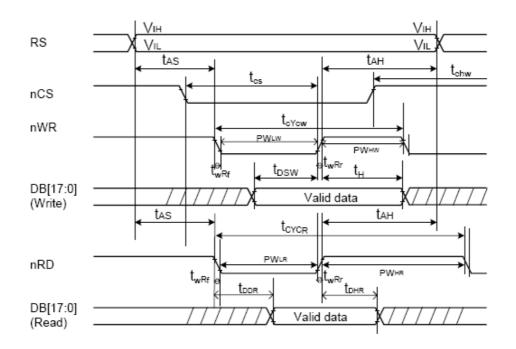
## **6. ELECTRONIC CHARACTERISTICS**

#### 6.1 MAXIMUM VALUES

|                       | GYMDOI | STANDARI | <b>VALUE</b> |      |
|-----------------------|--------|----------|--------------|------|
| ITEM                  | SYMBOL | MIN      | MAX          | UNIT |
| Logic supply voltage  | VDD    | -0.3     | +4.6         | V    |
| Operating Temperature | Тор    | -20      | +70          | °C   |
| Storage Temperature   | Tst    | -30      | +80          | °C   |

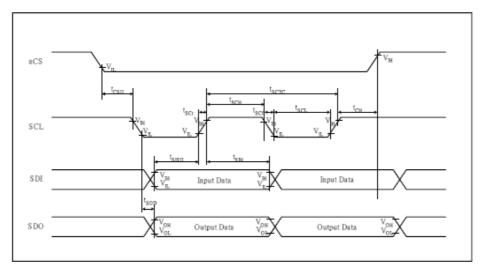
#### **6.2. DC CHARACTERISTICS**

\_(VCC = VCI=2.50 ~ 3.3V, IOVCC = 1.65 ~ 3.30V, Ta= -40 ~ 85 °C)


| ltem                                                                          | Symbol           | Unit | Test Condition                                                                                               | Min.          | Тур. | Max.      | Note |
|-------------------------------------------------------------------------------|------------------|------|--------------------------------------------------------------------------------------------------------------|---------------|------|-----------|------|
| Input high voltage                                                            | Vih              | V    | IOVCC= 1.65 ~ 3.3V                                                                                           | 0.8*IOV<br>CC | -    | IOVCC     | -    |
| Input low voltage                                                             | Vil              | V    | IOVCC= 1.65 ~ 3.3V                                                                                           | -0.3          | -    | 0.2*IOVCC | -    |
| Output high voltage(1)<br>( DB0-17 Pins)                                      | Vон1             | v    | IOH = -0.1 mA                                                                                                | 0.8*IOV<br>CC | -    | -         | -    |
| Output low voltage<br>( DB0-17 Pins)                                          | V <sub>OL1</sub> | v    | IOVCC=1.65~3.3V                                                                                              | -             | -    | 0.2*IOVCC | -    |
| I/O leakage current                                                           | l <sub>u</sub>   | μΑ   | Vin = 0 ~ VCC                                                                                                | -0.1          | -    | 0.1       | -    |
| Current consumption<br>during normal operation<br>(VCC - GND)+ (VCI -<br>GND) | I <sub>OP</sub>  | μΑ   | VCC=IOVCC=2.8V , Ta=25°C , fOSC =<br>512KHz ( Line) GRAM data = 0000h                                        | -             | TBD  | -         | -    |
| Current consumption<br>during standby mode<br>(VCC - GND)+ (VCI -<br>GND)     | I <sub>ST</sub>  | μΑ   | VCC=IOVCC=2.8V , Ta=25 °C                                                                                    | -             | TBD  | TBD       | -    |
| LCD Drive Power Supply<br>Current ( DDVDH-GND )                               | ILCD             | mΑ   | VCI=2.8V, VREG1OUT =4.8V<br>DDVDH=5.2V, Frame Rate: 70Hz,<br>line-inversion, Ta=25 °C, GRAM data =<br>0000h, | -             | 5.5  | -         | -    |
| LCD Driving Voltage<br>( DDVDH-GND )                                          | DDVDH            | V    | -                                                                                                            | 4.5           | -    | 6         |      |
| Output deviation voltage                                                      | VDEV             | m∨   | -                                                                                                            | -             | -    | TBD       | -    |
| Output offset voltage                                                         | VOFFBET          | m∨   | Note1                                                                                                        | -             | -    | TBD       | -    |

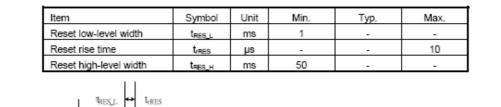
Note1: The Max. value is between with measure point and Gamma setting value.

#### 6.3 TIMING CHARACTERISTICS i80-System Interface Timing Characteristics


Normal Write Mode (IOVCC = 1.65~3.3V)

|                          | Item                       | Symbol                             | Unit | Min. | Тур. | Max. | Test Condition |
|--------------------------|----------------------------|------------------------------------|------|------|------|------|----------------|
| Rue quele fime           | Write                      | t <sub>cycw</sub>                  | ns   | TBD  | -    |      | -              |
| Bus cycle time           | Read                       | tcycr                              | ns   | 300  | -    | -    | -              |
| Write low-level pulse    | width                      | PWLW                               | ns   | TBD  | -    | 500  | -              |
| Write high-level pulse   | width                      | PW <sub>HW</sub>                   | ns   | TBD  | -    | -    | -              |
| Read low-level pulse     | width                      | PWLR                               | ns   | 150  | -    | -    | -              |
| Read high-level pulse    | width                      | PW <sub>HR</sub>                   | ns   | 150  | -    | -    |                |
| Write / Read rise / fall | time                       | t <sub>wer</sub> /t <sub>wer</sub> | ns   | -    | -    | 25   |                |
| Setup time               | Write (RS to nCS, E/nWR)   |                                    |      | 10   | -    | -    |                |
| Setup time               | Read ( RS to nCS, RW/nRD ) | t <sub>as</sub>                    | ns   | 5    | -    | -    |                |
| Address hold time        |                            | tan                                | ns   | 5    | -    | -    |                |
| Write data set up time   | •                          | t <sub>osw</sub>                   | ns   | 10   | -    | -    |                |
| Write data hold time     |                            | t <sub>H</sub>                     | ns   | 15   | -    | -    |                |
| Read data delay time     |                            | t <sub>oor</sub>                   | ns   | -    | -    | 100  |                |
| Read data hold time      |                            | t <sub>ohr</sub>                   | ns   | 5    | -    | -    |                |




#### Serial Data Transfer Interface Timing Characteristics (IOVCC= 1.65 ~ 3.3V)

| Item                           | )                    | Symbol                              | Unit | Min. | Тур. | Max. | Test Condition |
|--------------------------------|----------------------|-------------------------------------|------|------|------|------|----------------|
| Carial alask susla tima        | Write ( received )   | t <sub>scvc</sub>                   | μs   | TBD  | -    | -    |                |
| Serial clock cycle time        | Read ( transmitted ) | tsovo                               | μs   | 200  | -    | -    |                |
| Serial clock high – level      | Write ( received )   | tsch                                | ns   | 40   | -    | -    |                |
| pulse width                    | Read ( transmitted ) | t <sub>sch</sub>                    | ns   | 100  | -    | -    |                |
| Serial clock low - level pulse | Write ( received )   | t <sub>SCL</sub>                    | ns   | 40   | -    | -    |                |
| width                          | Read ( transmitted ) | tscu                                | ns   | 100  | -    | -    |                |
| Serial clock rise / fall time  |                      | t <sub>sor</sub> , t <sub>sor</sub> | ns   | -    | -    | 5    |                |
| Chip select set up time        |                      | t <sub>csu</sub>                    | ns   | 10   | -    | -    |                |
| Chip select hold time          |                      | t <sub>CH</sub>                     | ns   | 50   | -    | -    |                |
| Serial input data set up time  |                      | t <sub>sisu</sub>                   | ns   | 20   | -    | -    |                |
| Serial input data hold time    |                      | t <sub>siH</sub>                    | ns   | 20   | -    | -    |                |
| Serial output data set up time |                      | t <sub>sop</sub>                    | ns   | -    | -    | 100  |                |
| Serial output data hold time   |                      | t <sub>son</sub>                    | ns   | 5    | -    | -    |                |



Reset Timing Characteristics (IOVCC = 1.65 ~ 3.3 V)

 $V_{\rm IH}$ 



t<sub>RES\_H</sub>

nRESET

## **7. PINS DESCRIPTION**

#### PIN DESCRIPTION:

| Pin No. | Symbol    | Description                                                                            |
|---------|-----------|----------------------------------------------------------------------------------------|
| 1-4     | DB8-DB11  | Data Bus                                                                               |
| 5       | GND       | Ground                                                                                 |
| 6       | VCC       | Power supply: +2.8V                                                                    |
| 7       | /CS       | L: Chip Selected; H: Chip Unselected                                                   |
| 8       | RS        | L:Command; H:display data                                                              |
| 9       | /WR       | A write strobe signal and enables an operation to write data when the signal is low.   |
| 10      | /RD       | A read strobe signal and enables an operation to read out data when the signal is low. |
| 11      | IMO       | Select the MPU system interface mode                                                   |
| 12      | IM1       | 8bit         16bit         SPI           IMO         1         0         ID            |
| 13      | IM2       | IM1         1         0           IM2         0         0         1                    |
| 14      | SDI       | SPI interface input pin                                                                |
| 15      | SDO       | SPI interface output pin                                                               |
| 16      | YU        | touch panel output pin.(Touch screen Y corrdinate up YU)                               |
| 17      | XL        | touch panel output pin.(Touch screen X corrdinate left XL)                             |
| 18      | YD        | touch panel output pin.(Touch screen Y corrdinate down YD)                             |
| 19      | XR        | touch panel output pin.(Touch screen X corrdinate right XR)                            |
| 20      | LEDK      | Backlight LED cathode                                                                  |
| 21      | LEDA1     | Backlight LED anode(A1)                                                                |
| 22      | LEDA2     | Backlight LED anode(A2)                                                                |
| 23      | LEDA3     | Backlight LED anode(A3)                                                                |
| 24      | LEDA4     | Backlight LED anode(A4)                                                                |
| 25      | DB12      | Data bus                                                                               |
| 26-33   | DBO-DB7   | Data bus                                                                               |
| 34      | /reset    | L: initialization is executed                                                          |
| 35      | VCI       | A Power supply for step-up circuit and power supply circuit.(+2.8v)                    |
| 36      | VCC       | Power supply:+2.8V                                                                     |
| 37      | GND       | Ground                                                                                 |
| 38-40   | DB13-DB15 | Data bus                                                                               |

#### DEM 240320B TMH-PW-N(A-TOUCH)

## **8. INSTRUCTION DESCRIPTION**

| с<br>И | Registers Name                  | R/N RS    | 52             | 215     | D14                  | D43   | 010             | D11           | D10         | 6C          | 90            | 20          | 90         | 50          | Z                                                                                 | 8          | 6       | č          | 90      |
|--------|---------------------------------|-----------|----------------|---------|----------------------|-------|-----------------|---------------|-------------|-------------|---------------|-------------|------------|-------------|-----------------------------------------------------------------------------------|------------|---------|------------|---------|
| Ľ      | Index Register                  | >         |                |         |                      |       |                 |               |             |             |               | 201         | D.6        | 90          | D4                                                                                | 50         | 8       | ī          | 2       |
| ġ      |                                 | : 2       | , -            | -       | c                    | c     | Ţ               | c             | c           |             |               | įc          | ç c        | <u>-</u>    | ĥ                                                                                 | i e        | - 1     | i e        | j -     |
| 01h    |                                 | >         | . <del>.</del> |         |                      | 0     | 0               | 0             | SM          | 0           | SS            | 0           | 0          | 0           | 0                                                                                 | 0          |         | 0          |         |
| 52     |                                 | W         | ŕ.             | 0       | 0                    | 0     | 0               | 0             | 0           | B/C         | 0             | 0           | 0          | 0           | 0                                                                                 | 0          | ۵       | 0          | 0       |
| C3h    | Entry Mode                      | W         | 1              | TRI     | DFM                  | 0     | BGR             | 0             | 0           | 0           | 0             | ORG         | 0          | 101         | NDO                                                                               | AM         | D       | 0          | 0       |
| CSh    | 16 bits data format: control    | $\geq$    | ÷              | 0       | 0                    | 0     | 0               | 0             | 0           | 0           | 0             | 0           | 0          | 0           | 0                                                                                 | 0          | D       | EPF1       | EPFO    |
| 5      | Display Control 1               | W         | -              | 0       | 0                    | PTDC1 | PTDE0           | 0             | 0           | 0           | DAGED         | 0           | 0          | BON         | DTC                                                                               | а          | D       | D          | DO      |
| 087    | Display Control 2               | W         | -              | 0       | 0                    | 0     | 0               | FP3           | FP2         | FPI         | FP0           | 0           | 0          | 0           | 0                                                                                 | BP3        | BP2     | BP1        | BPO     |
| 60     | Display Control 3               | W         | -              | 0       | 0                    | 0     | 0               | 0             | 0           | PTS1        | PTS0          | 0           | 0          | PTG1        | PTG0                                                                              | ISC3       | ISC2    | <u>SC1</u> | ISCO    |
| ΠAh    | Display Control 4               | W         | ÷              | U       | с                    | c     | U               | U             | U           | U           | c             | C           | C          | c           | U                                                                                 | FMARKOF    | FMID    | FM1        | FMID    |
| S      | RGB Display Interface Control 1 | W         | -              | 0       | ENC2                 | ENC1  | ENCO            | 0             | 0           | 0           | RM            | 0           | 0          | DM1         | DM0                                                                               | 0          | ۵       | RIM1       | RIMO    |
| g      | Freme Maker Position            | $\sim$    | -              | 0       | 0                    | 0     | 0               | 0             | 0           | 0           | FMP8          | FMP7        | FMP6       | FMP5        | FMP4                                                                              | FMP3       | FMP2    | FMP1       | FMP0    |
| GFh    | RCE Displey Interface Control 2 | $\approx$ | -              | 0       | 0                    | 0     | 0               | 0             | 0           | 0           | 0             | 0           | 0          | 0           | VSPL                                                                              | HSPL       | 0       | EPL        | DL      |
| ē      | Power Control 1                 | W         | -              | 0       | 0                    | 0     | SAP             | 0             | BT2         | ETI         | БTO           | APE         | AP2        | AP1         | APO                                                                               | 0          | 0       | SLP        | STB     |
| 11h    | Power Control 2                 | W         | -              | 0       | Э                    | 0     | D               | D             | UC12        | UCI1        | UC10          | D           | DCIC       | DC01        | DCOD                                                                              | D          | VC2     | VC1        | VCU     |
| 121    | Power Control 3                 | N         | -              | 0       | 0                    | 0     | 0               | 0             | 0           | 0           | 0             | VCIRE       | 0          | 0           | 0                                                                                 | VRH3       | VRH2    | VRH1       | VRH0    |
| 13h    | Power Control 4                 | W         | ÷              | 0       | 0                    | 0     | VDV4            | VDV3          | VDV2        | VDV1        | V/D//0        | 0           | 0          | 0           | 0                                                                                 | 0          | 0       | 0          | 0       |
| 20h    | I Iorizontal GRAM Address Set   | W         | t-             | 0       | 0                    | 0     | 0               | 0             | 0           | 0           | 0             | AD7         | AD6        | ADS         | AD4                                                                               | AD3        | AD2     | AD1        | ADO     |
| Zih    | Vertical GRAM Address Set       | Μ         | -              | 0       | 0                    | 0     | 0               | 0             | 0           | 0           | AD16          | AD15        | AD'14      | AD13        | AD12                                                                              | AD11       | AD10    | AD9        | AD8     |
| 23     | Write Data to CRAN              | \$        | -              | RAM wri | RAM write data (WD17 |       | -0) / read data | (RD17-0) bits | ts are tran | sferred vis | a different v | data bus li | ines accor | ding to the | are transferred via different cata bus lines according to the selected interisces | nterísces. |         |            |         |
| 79h    | Power Control 7                 | W         | -              | U       | С                    | e     | U               | c             | C           | U           | C             | C           | c          | VCM5        | VCM4                                                                              | VDMB       | VCMP    | VCM1       | VCM0    |
| 먦      | Frame Rate and Color Control    | W         | ÷              | 0       | 0                    | 0     | 0               | 0             | 0           | 0           | 0             | 0           | 0          | 0           | 0                                                                                 | FRS[3]     | FRS[2]  | FRS[1]     | FRS[0]  |
| ЗÖ     | Camma Control 1                 | $\geq$    | -              | 0       | 0                    | 0     | 0               | 0             | KP1[2]      | KP1[1]      | KP1[0]        | 0           | 0          | 0           | 0                                                                                 | 0          | KPC[2]  | Kro(1)     | KPC[0]  |
| 5      | Gamma Cuntrol 2                 | Μ         | -              | 0       | 0                    | 0     | 0               | 0             | KP3[2]      | KP3[1]      | KP3[0]        | 0           | 0          | 0           | 0                                                                                 | 0          | KP2[2]  | KP2[1]     | KP2[0]  |
| 321    | Gamma Control 3                 | Χ         | -              | 0       | 0                    | -     | 0               | 0             | KP5[2]      | KP5[1]      | KP5[0]        | 0           | 0          | 0           | 0                                                                                 | 0          | KP4[2]  | KP4[1]     | KP4[0]  |
| 52     | Gamma Control 4                 | Μ         | -              | 0       | э                    | Э     | 0               | 0             | KP1[2]      | KP1[1]      | KP1[0]        | D           | D          | D           | 0                                                                                 | 0          | KPU[2]  | KFU[1]     | KPU[0]  |
| 365    | Gamma Control 5                 | Ν         | -              | C       | С                    | c     | VRP1[4]         | VRP1[3]       | VRP1[7]     | VRP1[1]     | VRP1[0]       | С           | с          | С           | 0                                                                                 | VRFD[3]    | VRP0[2] | VRP0[1]    | VRPD(0) |
| 37h    | Gamma Control 6                 | ≽         | -              | 0       | 0                    | 0     | 0               | 0             | KN1[2]      | KN1[1]      | KN1[0]        | 0           | 0          | 0           | 0                                                                                 | 0          | KN0[2]  | KNO[1]     | KN0[0]  |
| ŝ      | Camma Control 7                 | ≽         | -              | 0       | 0                    | 0     | 0               | 0             | KN3[2]      | KN3[1]      | KN3[0]        | 0           | 0          | 0           | 0                                                                                 | 0          | KN2[2]  | KN2[1]     | KN2[0]  |
| ŝ      | Camma Control 8                 | ≽         | -              | 0       | 0                    | 0     | 0               | 0             | KN5[2]      | KN5[1]      | KN5[0]        | 0           | 0          | 0           | 0                                                                                 | 0          | KN4[2]  | KN4[1]     | KN4[0]  |
| ត្ត    | Gamma Control 9                 | W         | -              | 0       | 0                    | 0     | 0               | 0             | RN1[2]      | RN1[1]      | RN1[0]        | 0           | 0          | 0           | 0                                                                                 | 0          | RN0[2]  | RNO[1]     | RN0[0]  |
| цр,    | Gamma Control 10                | М         |                | 0       | 0                    | -     | VRN1[4]         | VRN1[3]       | VRN1[2]     | VRN1[1]     | VRN10         | 0           | 0          | 0           | 0                                                                                 | VRN0[3]    | VRND[2] | VRN0[1]    | VRNDIO  |
| 50     | Horizontal Address Start        | W         | ÷.             | 0       | 0                    | 0     | 0               | 0             | 0           | 0           | 0             | HSA7        | HSAG       | HSA5        | HSA4                                                                              | HSA3       | HSA2    | HSA1       | HSA0    |

Version: 2.1.0

# DEM 240320B TMH-PW-N(A-TOUCH)Production Specification

| Š                 | Registers Name                                                          | R.W RS | ý, | D15  | D14          | D13            | D12 | D11            | D10   | 60    | D8     | D7       | Ъĥ       | 50             | D4             | D3           | 5               | δ             | DΟ          |
|-------------------|-------------------------------------------------------------------------|--------|----|------|--------------|----------------|-----|----------------|-------|-------|--------|----------|----------|----------------|----------------|--------------|-----------------|---------------|-------------|
|                   | Position                                                                |        |    |      |              |                |     |                |       |       |        |          |          |                |                |              |                 |               |             |
| £                 | I Iorizantel Address End Position                                       | >      | -  | 0    | 0            | 0              | 0   | 0              | 0     | 0     | o      | ICA7     | IICA6    | 1 IEAS         | IICA4          | CA311        | EA2             | I ICA1        | IIEAO       |
| ន្ត               | Vertical Address Start Position                                         | ×      | _  | 0    | 0            | 0              | 0   | 0              | 0     | 0     | VSA8   | VSA7     | VSA6     | VSA5           | VSA4           | VSA3         | VSA2            | VSAI          | VSAD        |
| ${}_{22}^{\rm L}$ | Vertical Address End Position                                           | W 1    | _  | 0    | =            | 0              | =   | 0              | =     |       | VEAR   | VEAV     | VEAR     | VEA5           | VH A4          | VEA3         | VHAU            | VHA1          | VFAD        |
| ģ                 | Driver Output Control 2                                                 | ×      | _  | SS   | 0            | NL5            | NL1 | NL3            | NL2   | R     | ٩N     | 0        | 0        | SCN5           | SCN1           | SCN3         | SCN2            | SCN1          | SCND        |
| 댕                 | <b>Base Image Display Control</b>                                       | V<br>t | -  | 0    | 0            | 0              | 0   | 0              | 0     | 0     | 0      | 0        | 0        | 0              | 0              | 0            | NDL             | ערב           | 2<br>2<br>2 |
| 66)               | SPI ReadWitte Control                                                   | W      | -  | 0    | 0            | 0              | 0   | 0              | 0     | 0     | 0      | 0        | 0        | 0              | •              | •            | 0               | 0             | XVN (C      |
| GΔh               | <ul> <li>Vertical Scroll Control</li> </ul>                             | W 1    |    | 0    | 0            | 0              | 0   | 0              | 0     | 0     | VLB    | VL7      | VLB      | כווי           | VL4            | VL3          | VL2             | VL1           | VLD         |
| ģ                 |                                                                         | W 1    | _  | 0    | 0            | 0              | 0   | 0              | 0     |       | PTDP00 | PTDP07   | PTDP00   | PTDP05         | PTDP04         | PTDP03       | PTDP02 1        | PTDP01        | PTDP00      |
| 811               |                                                                         | Ň      | _  | 0    | 0            | 0              | 0   | 0              | 0     | 0     | PTSA08 | PTSA07   | PTSA06   | PTSA05         | PTSA04         | PTSA03       | PTSA02          | PTSA01        | PTSA00      |
| ğ                 |                                                                         | W      | _  | 0    | 0            | 0              | 0   | 0              | 0     | 0     | PTEA08 | PTEA07   | PTEA06   | FTEA05         | PTEA04         | PTEA03       | PTEA02          | PTEA01        | PTEA00      |
| ŝ                 |                                                                         | W<br>t | _  | 0    | 0            | 0              | 0   | 0              | 0     |       | PTDP18 | PTDP17   | PTDP16   | PTDP15         | PTDP14         | PTDP13       | PTDP12          | PTDP11        | PTDP10      |
| 5                 | Partial Image 2 /rraa (Start Line)                                      | W 1    | _  | 0    | 0            | 0              | 0   | 0              | 0     | 0     | PTSA18 | PTSA17   | PTSA16   | PTSA15         | PTSA14         | PTSA13       | PTSA12          | PTSA11        | PTS//10     |
| ŝ                 |                                                                         | W      |    | 0    | 0            | 0              | 0   | 0              | 0     | 0     | PTEA18 | PTEA17   | PTEA16   | PTEA15         | PTEA14         | PTEA13       | PTEA12          | PTEA11        | PTEA10      |
| S                 |                                                                         | W 1    | _  | 0    | D            | 0              | 0   | D              | D     | UNI   | DIVICO | 0        | 0        | 0              | KIN4           | K INB        | KINI2           | HINH          | KINIU       |
| 5                 | Panel Intertace Control 2                                               | W 1    | -  | 0    | =            | 0              | =   | 0              | NOWE? | NCWI1 | NOWIO  | 0        | 0        | 0              | 0              | =            | =               | =             | =           |
| ଞ୍ଚ               | Panel Interface Control 4                                               | W 1    |    | 0    | 0            | 0              | 0   | 0              | 0     | DIVE1 | ONED   | 0        | 0        | 0              | 0              | 0            | 0               | 0             | 0           |
| ۲ <u>/</u>        | Panel Interface Control 5                                               | W<br>1 | _  | 0    | 0            | 0              | 0   | NOWE3          | IOWE2 | NCWE1 | NOWED  | 0        | 0        | 0              | 0              | 0            | 0               | 0             | 0           |
| A1h               | CTP VCM Programming Control                                             | W 1    | ÷  | 0    | 0            | 0              |     | DTP_<br>PGM_EN |       | 0     | 0      | 0        | 0        | OTP5           | VCM_<br>OTP4   |              | VCM_<br>OTP2    |               |             |
| μZΑ               | OTP VCM Status and Enable                                               | W      |    | CNT1 | CNTD<br>CNTD | Š <sup>R</sup> |     | VCM_<br>D3_    |       | VCM_  |        | 0        | 0        | 0              | 0              | 0            | 0               | 0             | -MON_       |
| A5h               | OTP Programming ID Key                                                  | ×<br>t | -  |      | ₹            | KĒ∖            | ÅĒY | ¥⊟Y<br>1       | ∯≎    | ₩°    | ĕ∾     | KEY<br>7 | КĒ<br>КĒ | KEY<br>KE      | КПҮ<br>4       | ж<br>З       | 2<br>KEY        | KE<br>≺       | Ňо          |
| E1h               | Write Display Brightness                                                | ×<br>1 | _  | ×    | ×            | ×              |     | ×              |       | ×     | ×      | DB//7    | DB'/6    | DB'/5          | DBV4           | DB//3        | DBV2            | DBV1          | DBV0        |
| B211              |                                                                         | 2      | -  | ×    | ×            | ×              | ×   | ×              | ×     | ×     | ×      | D0/7     | 97/0C    | 5//OO          | DBV4           | CVOO         | DDV2            | D0V1          | DVOO        |
| ВЗh               | NITTLE CTRL Display value                                               | W<br>T | _  | ×    | ×            | ×              | ×   | ×              | ×     | ×     | ×      | ×        | ×        | DCTFL          | ×              | 00           | Ы               | ×             | ×           |
| H <del>4</del> H  | Head CLKL Display value                                                 | ۲<br>۲ |    | ×    | ×            | ×              | ×   | ×              | ×     | ×     | ×      | ×        | ×        | BCTFL          | ×              | 00           | 믭               | ×             | ×           |
| BSh               | <ul> <li>Write Content Adaptive<br/>Brightness Control value</li> </ul> | N<br>T | -  | ×    | ×            | ×              | ×   | ×              | ×     | ×     | ×      | ×        | ×        | ×              | ×              | ×            | ×               | C[1-1]        | [Ċ          |
| BGh               |                                                                         | ά      |    | ×    | ×            | ×              | ×   | ×              | ×     | ×     | ×      | ×        | ×        | ×              | ×              | ×            | ×               | C[1:D]        | Ģ           |
|                   | - 1                                                                     | +      |    |      |              |                |     |                |       |       |        |          |          |                |                |              |                 | •             |             |
| BEh               | Norte CABC Minimum<br>Brightness                                        | N      | -  | ×    | ×            | ×              | ×   | ×              | ×     | ×     | ×      |          |          |                | CME            | CME[7:0]     |                 |               |             |
| El                |                                                                         | х<br>- | _  | ×    | ×            | ×              | ×   | ×              | ×     | ×     | ×      |          |          |                | CNE            | CME(7:0)     |                 |               |             |
| No.               | Registers Name                                                          | RW R   | RS | D15  | D14          | D-13           | D12 | D'             | D10   | 60    | D8     | D7       | 8        | DS             | đ              | D3           | D2              | D-1           | DO          |
| C8h               |                                                                         | W 1    |    | ×    | ×            | ×              | ×   | ×              | ×     | ×     | ×      |          |          |                | PWM I          | PWM DIV(7:0) |                 |               |             |
| C9h               | h CABC Control 2                                                        | W 1    | 1  | ×    | ×            | ×              | ×   | ×              | ×     | ×     | ×      |          | THRES_   | THRES_MOV[3:0] |                | -            | THRES_STIL[3:0] | 1LL[3:0]      |             |
| CAh               |                                                                         | ×      | -  | ×    | ×            | ×              | ×   | ×              | ×     | ×     | ×      | 0        | 0        | 0              | 0              |              | THRES_UI3:0]    | JI[3:0]       |             |
| CBH               | CABC Curltd                                                             | >      | _  | ×    | ×            | ×              | ×   | ×              | ×     | ×     | ×      |          | DTILN    | 0.CIVOM LITC   |                |              |                 | L[3:0]        |             |
| ő                 |                                                                         | ×      | -  | ×    | ×            | ×              | ×   | ×              | ×     | ×     | ×      | -        | 0        | •              | •              | ,            | DTH_UI[3:0]     | 3:0           |             |
| ģ                 |                                                                         | ×      | -  | ×    | ×            | ×              | ×   | ×              | ×     | ×     | ×      |          | DIM      | DIM_CPT2[3:0]  |                | -            | DIN             | DIM_OPT1[2:0] | <u>.</u>    |
| Ē                 | h CABC Cuntrel 7                                                        | ×      |    | ×    | ×            | ×              | ×   | ×              | ×     | ×     |        |          |          | ň              | SCD_VLINE[0:0] | 0:0]         |                 |               |             |

## 9. BACKLIGHT PARAMETERS

9.1 ABSOLUTE MAXIMUM RATINGS

|                             | ן(     | Unless specified, The Ambient te | emperature Ta | a=25℃) |
|-----------------------------|--------|----------------------------------|---------------|--------|
| Item                        | Symbol | Condition                        | Rating        | Unit   |
| Operating temperature range | Topr   |                                  | -20~+70       | °C     |
| Storage temperature range   | Tst    |                                  | -30~+80       | °C     |

9.2 ELECTRICAL/OPTLCAL CHARACTERISTICS

(Unless specified, The Ambient temperature  $Ta=25^{\circ}C$ )

|                  |        |      | ,   | 1    | -                 | 1         |
|------------------|--------|------|-----|------|-------------------|-----------|
| Item             | Symbol | min  | typ | max  | Unit              | Condition |
| Forward Voltage  | Vf     | 2.9  | 3.2 | 3.5  | V                 | If=60mA   |
| Luminance        | Lv     | 3500 |     |      | cd/m <sup>2</sup> | If=60mA   |
| 1 1 1            | Х      | 0.26 |     | 0.30 |                   |           |
| color coordinate | Y      | 0.26 |     | 0.30 |                   | If=60mA   |

## 10. Product Quality & Reliability

#### **10.1 Standard for Quality Test**

10.1.1 Inspection :

Before delivering, the supplier should take the following tests, and affirm the quality of product.

10.1.2 Electro-Optical Characteristics:

According to the individual specification to test the product.

10.1.3 Test of Appearance Characteristics:

According to the individual specification to test the product.

10.1.4 Test of Reliability Characteristics:

According to the definition of reliability on the specification for testing products.

10.1.5 Delivery Test:

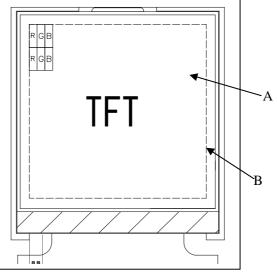
Before delivering, the supplier should take the delivery test.

A. Test method: According to GB/2828, General Inspection Level  $\Box$  take a single time.

B. The defects classify of AQL as following:

Major defect: AQL=0.25

Minor defect: AQL=1.0


Total defects: AQL=1.0

#### **10.2 Standard for inspection**

10.2.1 Manner of appearance test:

- a. The test must be under a 40W fluorescent light, and the distance of view must be at 30~35 cm.
- b. When test the model of transmissive product must add the reflective plate.
- c. The test direction is base on about around 45° of vertical line.
- 10.2.2 Definition of area: A B

- A Area : Viewing area.
- B Area : Out of viewing area.(Outside viewing area)



10.2.3 Basic principle:

- A. In principle the defect out of Area A should be acceptable if the defect does not affect assemblage and the quality of productions.
- B. If defects that can not describe clearly, acceptable samples will be the standard.

C. The sample of the lowest acceptable quality level must be discussed by both supplier and customer when any dispute happened.

D. Must add new item on time when it is necessary.

| 10.2.4 | 4 Standard of inspection        |     |                                                                      |         |             |         |
|--------|---------------------------------|-----|----------------------------------------------------------------------|---------|-------------|---------|
| Defect | Inspect item                    |     | С                                                                    | riteria |             |         |
|        | Scratch and fold on polarizer.  | 1)  | width $\leq 0.02$                                                    | mm      | length      | ignore  |
|        | Scratch on glass.               |     |                                                                      |         | acc         | eptable |
| 1      | Glass fiber etc.                | 2)  | 0.02 mm <width< td=""><td>h≤0.0</td><td>)5 mm</td><td></td></width<> | h≤0.0   | )5 mm       |         |
| Minor  | (by bare eyes, defect outside A | len | gth≪3 mm                                                             |         | two are acc | eptable |
|        | area is acceptable)             | 3)  | width>0.05 mn                                                        | n       |             | reject  |
|        |                                 |     |                                                                      |         |             |         |

| Defect | Inspect item                  | Criteria                                       |
|--------|-------------------------------|------------------------------------------------|
|        | Chip on glass(round type)     | $\Phi \leq 0.1 \text{mm}$ acceptable           |
|        | Chip on polarizer(round type) | $0.1 < \Phi \leq 0.2$ mm two are acceptable    |
|        | Air bubble between polarizer  |                                                |
| 2      | and glass                     | 1. The distance between any two dots should    |
| Minor  |                               | be more than 5mm.                              |
|        | a                             | 2.Defect outside A area is acceptable.         |
|        | b                             | 3.If the air bubble is black, it can be judged |
|        | $\Phi = (a + b)/2$            | as black spot.                                 |

| Defect     | Inspect item                | Criteria                                                                                                                         |
|------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| 3<br>Minor | Chip out                    | $x \le 3 \text{ mm}$ z ≤t y ≤1/3 s reject<br>t: glass thickness.<br>S: distance between glass edge and inside of<br>edge sealing |
|            | z: thickness                |                                                                                                                                  |
| Defect     | Inspect item                | Criteria                                                                                                                         |
| 4<br>Minor | Chip on corner of neat edge | $x \leq 3 \text{ mm } y \leq 3 \text{ mm } z \leq t$<br>acceptable<br>any chip exposes the silver dot reject                     |

| Defect     | Inspect item                    | Criteria                                                                                       |
|------------|---------------------------------|------------------------------------------------------------------------------------------------|
| 5<br>Minor | Chip on corner of terminal edge | $x<0.3 \text{ mm or } y<0.3 \text{ mm}$ ignore $x \leq 3 \text{ mm } y < D$ two are acceptable |

| Defect | Inspect item             | Criteria              |  |
|--------|--------------------------|-----------------------|--|
|        | Chip on opposite side of | a≥80mm, x≥7mm reject  |  |
|        | terminal                 | a<80mm, x>5mm reject  |  |
| 6      |                          | y>1/2D reject         |  |
| Minor  | Y X X                    | z>1/2t, y>1/4D reject |  |
|        |                          | D: terminal length    |  |
|        | D                        |                       |  |

| Defect     | Inspect item                    | Criteria                              |
|------------|---------------------------------|---------------------------------------|
|            | Cutting/breaking defect (flare) | According to the dimension of drawing |
| 7<br>Minor |                                 |                                       |

| Defect     | Inspect item | Criteria                         |
|------------|--------------|----------------------------------|
| 8<br>Minor | Crack        | Any crack trend to extend reject |

| Defect | Inspect item                 | Criteria |
|--------|------------------------------|----------|
| 9      | Liquid leakage, open sealant | reject   |
| Major  |                              |          |

| Defect | Inspect item | Criteria             |
|--------|--------------|----------------------|
| 10     | Rainbow      | According to samples |
| Minor  |              |                      |

| Defect | Inspect item                 | Criteria |
|--------|------------------------------|----------|
| 11     | FPC, TCP, FLEX are broken or | reject   |
| Major  | not connected firmly         |          |

| Defect | Inspect item                     | Criteria |
|--------|----------------------------------|----------|
|        | The component on PCB or FPC      | reject   |
| 12     | is missing ,soldered unfirmly or |          |
| Minor  | bridged                          |          |
|        |                                  |          |

| Defect | Inspect item                    | Criteria                                                                          |
|--------|---------------------------------|-----------------------------------------------------------------------------------|
| 13     | The soldering tin is not enough | The height that soldering tin covers the burn of component is $1/2$ loss than the |
| Minor  |                                 | bump of component is 1/2 less than the<br>height of bump reject                   |

| Defect | Inspect item                |     |           | Cr  | iteria |        |      |
|--------|-----------------------------|-----|-----------|-----|--------|--------|------|
| 14     | The soldering tin overflows | The | soldering | tin | covers | whole  | bump |
| Minor  |                             |     |           |     |        | reject |      |
| Defect | Inspect item                |     |           | Cr  | iteria |        |      |
| 15     | The component is broken     |     |           |     |        | reject |      |
| Minor  |                             |     |           |     |        |        |      |

| Defect | Inspect item                    | Criteria                    |        |
|--------|---------------------------------|-----------------------------|--------|
| 16     | The shape of pinouts is not the | It makes the LCM work badly | reject |
| Minor  | same as that in the criterion   |                             |        |

| Defect | Inspect item         | Criteria |
|--------|----------------------|----------|
| 17     | The pinout is broken | reject   |
| Minor  |                      |          |

| Defect | Inspect item                   |        | Criteri | a      |
|--------|--------------------------------|--------|---------|--------|
| 18     | The frame is scratched visibly | Length |         | ignore |
| Minor  |                                | Width  | >0.5mm  | reject |

## DEM 240320B TMH-PW-N(A-TOUCH)

| Defect | Inspec         | t item |        | Criteria                             |
|--------|----------------|--------|--------|--------------------------------------|
|        | The frame      | is     | rusted | When the shape is as dot, reference  |
| 19     | (accumulation) |        |        | to defect 23                         |
| Minor  |                |        |        | When the shape is as line, reference |
|        |                |        |        | to defect 24                         |

| Defect | Inspect item                    | Cri                                                    | teria              |
|--------|---------------------------------|--------------------------------------------------------|--------------------|
|        | Scratch and fold on touchpanel. | 1) width≤0.02 mm                                       | acceptable         |
| 20     | (by bare eyes, defect outside A | 2) 0.02 mm <width≤0< td=""><td>).05 mm</td></width≤0<> | ).05 mm            |
| Minor  | area is acceptable)             | length≤5 mm                                            | two are acceptable |
|        |                                 | 3) width>0.05 mm                                       | reject             |

| Defect | Inspect item             | Criteria                                                 |
|--------|--------------------------|----------------------------------------------------------|
|        | Black & white dots on    | 1) $\Phi \leq 0.1 \text{ mm}$ acceptable                 |
|        | touchpanel (round type)  | 2) $0.1 < \Phi \leq 0.3 \text{ mm}$ three are acceptable |
|        | Air bubble on touchpanel | 3) $\Phi$ >0.3 mm reject                                 |
| 21     |                          | 1. The distance between any two dots should              |
| Minor  |                          | be more than 5mm.                                        |
|        | a                        | 2.Defect outside A area is acceptable.                   |
|        | $\Phi = (a + b)/2$       | 3.If the air bubble is black, it can be judged           |
|        |                          | as black spot.                                           |

| Defect | Inspect item     | Criteria                               |
|--------|------------------|----------------------------------------|
| 22     | Touchpanel warps | According to the dimension of drawing. |
| Minor  |                  |                                        |

| Defect | Inspect item                | Criteria                                                 |
|--------|-----------------------------|----------------------------------------------------------|
| 23     | Dirty on rear of touchpanel | It's visible at condition of $30 \pm 5$ cm, $45^{\circ}$ |
| Minor  |                             |                                                          |

| Defect | Inspect item                | Criteria                                                 |
|--------|-----------------------------|----------------------------------------------------------|
| 24     | Dirty on rear of touchpanel | It's visible at condition of $30 \pm 5$ cm, $45^{\circ}$ |
| Minor  |                             |                                                          |

#### **10.3 RELIABILITY**

| Item                                         | Condition                                                                           | Criterion                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| High temperature operation                   | 70℃, 96 hrs                                                                         | <ul> <li>-Cosmetic defects are not allowed<br/>after the test(Polarizer change is<br/>exceptional)</li> <li>-Contrast ratio change over 50%<br/>of initial value should not be<br/>happened</li> <li>-The current consumption should<br/>be below double of initial value</li> <li>-Brightness decrease should be<br/>lower than 50% of initial value</li> </ul> |
| Low temperature<br>operation                 | -20°C, 96 hrs                                                                       |                                                                                                                                                                                                                                                                                                                                                                  |
| Moisture storage<br>High temperature storage | 60°C, 90%RH, 96 hrs<br>80°C, 96 hrs                                                 |                                                                                                                                                                                                                                                                                                                                                                  |
| Low temperature storage<br>Thermal shock     | -30℃, 96 hrs<br>-30℃ (30 minute)<br>25℃ (5 minute)<br>80℃ (30 minute)<br>CYCLES: 10 |                                                                                                                                                                                                                                                                                                                                                                  |
| LIFE TIME                                    | 50,000 hours, 25±10℃,<br>45±20% RH                                                  |                                                                                                                                                                                                                                                                                                                                                                  |

## **<u>11. PRECAUTIONS IN USING</u>**

#### 11.1 Liquid crystal display (LCD)

The LCD panel is made up of glass, organic fluid and polarizer. When handling, please pay attention to the following items:

- 1) Keep the operation and storage temperature of the LCD within the range specified in the LCD specification. Otherwise, excessive temperature and humidity would cause polarization degradation, bubble generation or polarizer peel-off.
- 2) Prevent it from mechanical shock by dropping it from a high place, etc.
- 3) Don't contact, push or rub the exposed polarizers with anything harder than HB pencil lead.
- 4) Avoid using chemicals such as acetone, toluene, ethanol and isoropylalcohol to clean the front/rear polarizers and reflectors, which will cause damage to them.
- 5) Wipe off saliva or water drops immediately. Contact with water over a long period of time may cause deformation or color fading. The LCM is assembled and adjusted with a high degree of precision.
- 6) Do not put or attach anything on the display area. Avoid touching the display area with bare hand.

#### **11.2 Precaution for handling LCD modules**

The LCM is assembled and adjusted with a high degree of precision, do not applying excessive shocks to it or making any alterations or modifications to it, the following precautions should be taken when handing.

- 1) Do not drop, bend or twist the module.
- 2) Do not alter or making any modification on the shape of the metal frame.
- 3) Do not change the shape, the pattern wiring or add any extra hole on the PCB.
- 4) Do not modify or touch the zebra rubber strip(conductive rubber) with another object.
- 5) Do not change the positions of components on the PCB.

#### **11.3 Electro-static discharge control**

Careful attention should be paid to control the electrostatic discharge of the modules, since the modules contain no. of CMOS LSI.

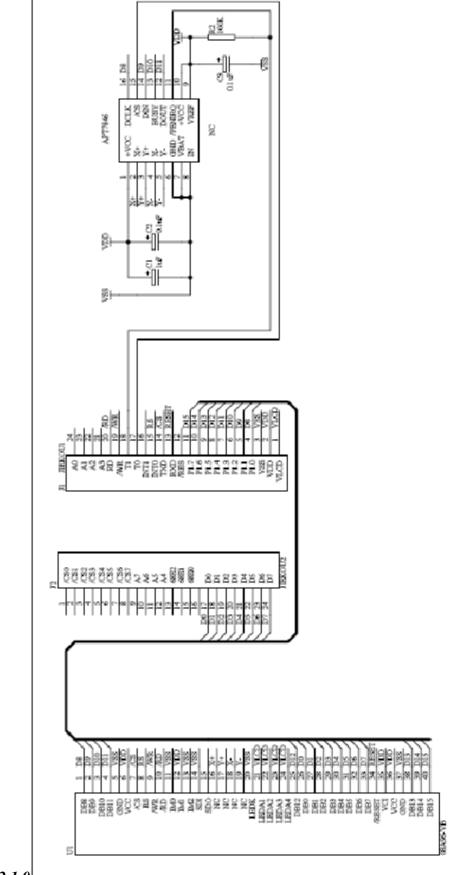
- 1) Make sure you are grounded properly when remove the module from its antistatic bag. Be sure that the module and have the same electric potential.
- 2) Only properly grounded soldering iron should be used.
- 3) Modules should be stored in antistatic bag or other containers resistant to static after remove from its original package.
- 4) When using the electric screw-driver is used, make sure the screw driver had been ground potentiality to minimize the transmission of EM wave produced by commutator sparks.
- 5) In order to reduce the generation of static electricity, a relative humidity of 50-60% is recommended.

#### **11.4 Precaution for soldering**

- 1) Soldering should apply to I/O terminals only.
- 2) Soldering temperature is  $280^{\circ}C+(-)10^{\circ}C$ .
- 3) Soldering time 3-4 seconds.
- 4) Eutectic solder (rosin flux filled) should be used.
- 5) If soldering flux is used, be sure to remove any remaining flux after finishing the soldering operation and LCD surface should be covered during soldering to prevent any damage to flux spatters.
- 6) When remove the lead wires from the I/O terminals, use proper de-soldering methods, e.g. suction type de-soldering irons. Do not repeat wiring by soldering more than three times at the pads and plated though holes may be damaged.

#### **11.5 Precaution for operation**

- 1) Adjust liquid crystal driving voltage (Vo) to varies viewing angle and obtain the contrast.
- 2) Vo should be kept in proper range stated in the specification. Excess voltage will shorten the LCD life.
- 3) Response time is greatly delayed at low temperature. It will recover when go back to normal temperature.
- 4) Condensation on terminals can cause an electrochemical reaction disrupting the terminal circuit. Therefore it should be used under the relative condition of 50% RH.


#### 11.6 Storage

When long term storage is required, following precautions are necessary:

- 1) Storage them in a sealed polyethylene bag (antistatic), seal the opening, and store it where it is not subjected to direct sunshine, or to the light of fluorescent lamp. If properly sealed, there is no need for desiccant.
- 2) Store them in the temperature range of  $-30^{\circ}$ C  $\sim 80^{\circ}$ C and at low humidity is recommended.

## **12. APPLICATION**

### **12.1 REFERENCE CIRCUIT**



Version: 2.1.0

PAGE: 23

#### **12.2 APPENDIX**

INITIALIZATION FOR REFERENCE (MPU: AT89C512): //\*\*\*\*\*\*\*\*\*\*\*\* Start Initial Sequence \*\*\*\*\*\*\*\*\*\* LCD\_CtrlWrite(0x00E3);LCD\_DataWrite(0x3008);//Set internal timing delay(200); LCD\_CtrlWrite(0x00E7);LCD\_DataWrite(0x0012);//Set internal timing delay(200); LCD CtrlWrite(0x00EF);LCD DataWrite(0x1231);//Set internal timing delay(200); LCD\_CtrlWrite(0x0001);LCD\_DataWrite(0x0000);//Set SS and SM bit LCD\_CtrlWrite(0x0002);LCD\_DataWrite(0x0200);//LCD Driving Wave Control LCD CtrlWrite(0x0003);LCD DataWrite(0x0030);//set GRAM write direction and BGR LCD\_CtrlWrite(0x0005);LCD\_DataWrite(0x0000);//16bits Data Format Selection LCD\_CtrlWrite(0x0008);LCD\_DataWrite(0x0207);//set the back porch and front porch LCD\_CtrlWrite(0x0009);LCD\_DataWrite(0x0000);//set non-display area refresh cycle ISC[3:0] LCD\_CtrlWrite(0x000A);LCD\_DataWrite(0x0000);//FMARK function LCD CtrlWrite(0x000C):LCD DataWrite(0x0000)://RGB interface setting LCD CtrlWrite(0x000D);LCD DataWrite(0x0000);//Frame marker Position LCD\_CtrlWrite(0x000F);LCD\_DataWrite(0x0000);//RGB interface polarity LCD CtrlWrite(0x0010);LCD DataWrite(0x0000);//SAP, BT[3:0], AP, DSTB, **SLP, STB** LCD CtrlWrite(0x0011);LCD DataWrite(0x0007);//DC1[2:0], DC0[2:0], VC[2:0] LCD\_CtrlWrite(0x0012);LCD\_DataWrite(0x0000);//VREG1OUT voltage LCD\_CtrlWrite(0x0013);LCD\_DataWrite(0x0000);//VDV[4:0] for VCOM amplitude delav(400): LCD\_CtrlWrite(0x0010);LCD\_DataWrite(0x1290);//SAP, BT[3:0], AP, DSTB, **SLP, STB** delay(400); LCD\_CtrlWrite(0x0011);LCD\_DataWrite(0x0227);//DC1[2:0], DC0[2:0], **VC[2:0]** delay(400); LCD\_CtrlWrite(0x0012);LCD\_DataWrite(0x001B);//VREG1OUT voltage delay(400); LCD CtrlWrite(0x0013);LCD DataWrite(0x1700);//VDV[4:0] for VCOM

amplitude LCD\_CtrlWrite(0x0029);LCD\_DataWrite(0x001E);//VCM[4:0] for VCOMH LCD\_CtrlWrite(0x002B);LCD\_DataWrite(0x000D);//Set Frame Rate delay(400);

\*\*\*\*\*

LCD\_CtrlWrite(0x0020);LCD\_DataWrite(0x0000);//GRAM horizontal Address LCD\_CtrlWrite(0x0021);LCD\_DataWrite(0x0000);//GRAM Vertical Address

// ------ Adjust the Gamma Curve -----//

LCD\_CtrlWrite(0x0030);LCD\_DataWrite(0x0004); LCD\_CtrlWrite(0x0031);LCD\_DataWrite(0x0007); LCD\_CtrlWrite(0x0032);LCD\_DataWrite(0x0006); LCD\_CtrlWrite(0x0035);LCD\_DataWrite(0x0206); LCD\_CtrlWrite(0x0036);LCD\_DataWrite(0x0408); LCD\_CtrlWrite(0x0037);LCD\_DataWrite(0x0507); LCD\_CtrlWrite(0x0038);LCD\_DataWrite(0x0200); LCD\_CtrlWrite(0x0039);LCD\_DataWrite(0x0707); LCD\_CtrlWrite(0x003C);LCD\_DataWrite(0x0504); LCD\_CtrlWrite(0x003D);LCD\_DataWrite(0x0504);

//----- Set GRAM area -----//

LCD\_CtrlWrite(0x0050);LCD\_DataWrite(0x0000);//Horizontal GRAM Start Address

LCD\_CtrlWrite(0x0051);LCD\_DataWrite(0x00EF);//Horizontal GRAM End Address

LCD\_CtrlWrite(0x0052);LCD\_DataWrite(0x0000);//Vertical GRAM Start Address

LCD\_CtrlWrite(0x0053);LCD\_DataWrite(0x013F);//Vertical GRAM End Address

LCD\_CtrlWrite(0x0060);LCD\_DataWrite(0xA700);//Gate Scan Line

LCD\_CtrlWrite(0x0061);LCD\_DataWrite(0x0001);//NDL,VLE,REV

LCD\_CtrlWrite(0x006A);LCD\_DataWrite(0x0000);//Set scrolling line

LCD\_CtrlWrite(0x0066);LCD\_DataWrite(0x0000);//SPI Read/Write Control

//----- Partial Display Control -----//

LCD\_CtrlWrite(0x0080);LCD\_DataWrite(0x0000);

LCD\_CtrlWrite(0x0081);LCD\_DataWrite(0x0000);

LCD CtrlWrite(0x0082);LCD DataWrite(0x0000);

LCD\_CtrlWrite(0x0083);LCD\_DataWrite(0x0000);

LCD\_CtrlWrite(0x0084);LCD\_DataWrite(0x0000);

LCD\_CtrlWrite(0x0085);LCD\_DataWrite(0x0000);

//----- Panel Control -----//

LCD\_CtrlWrite(0x0090);LCD\_DataWrite(0x0010); LCD\_CtrlWrite(0x0092);LCD\_DataWrite(0x0600);

LCD\_CtrlWrite(0x0007);LCD\_DataWrite(0x0133);//Display ON delay(400);

}