DISPLAY Elektronik GmbH

DATA SHEET

EPD MODULE

DEE 200200B-W 1,54" E-Paper Display

Product Specification

Ver.: 0

Version	Content	Date	Producer
0	New Release	22.04.2021	JQ

CONTENTS

1	Gen	eral Description	4
2	Feat	ures	4
3	App	lication	4
4	Mec	chanical Specification	4
	4.1	Dimension	4
	4.2	Mechanical Drawing of EPD Module	5
5	Inpu	nt/output Pin Assignment	6
6	Elec	trical Characteristics	7
	6.1	Absolute Maximum Rating	7
	6.2	Panel DC Characteristics	8
	6.3	Panel DC Characteristics(Driver IC Internal Regulators)	9
	6.4	Panel AC Characteristics	10
6.4	.1 1	MCU Interface Selection	10
6.4	.2 1	MCU Serial Interface (4-wire SPI)	10
6.4	.3 1	MCU Serial Interface (3-wire SPI)	11
6.4	.4]	Interface Timing	12
7	Opti	ical Specification	13
8	Han	dling, Safety, and Environment Requirements	14
9	Relia	ability Test	15
10	Bl	ock Diagram	16
11	Ty	pical Application Circuit with SPI Interface	17

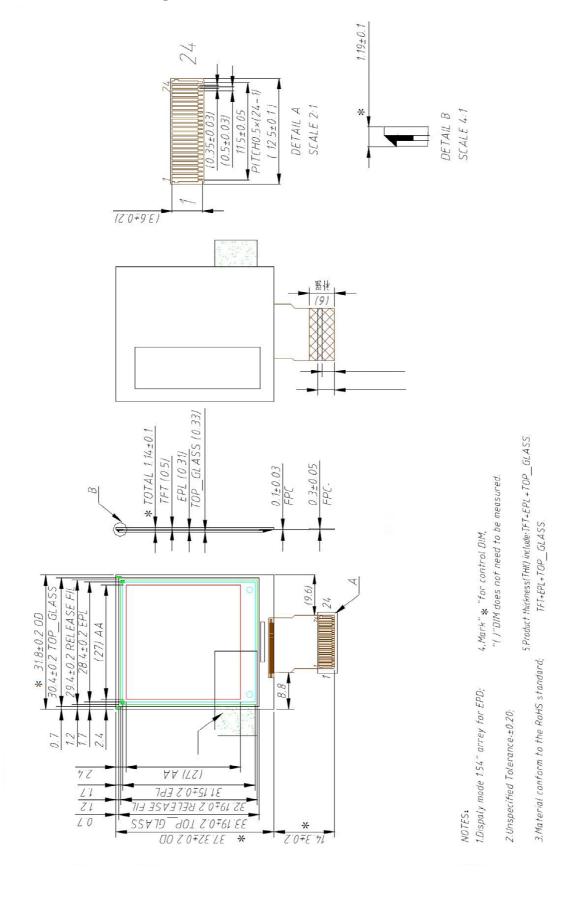
1 General Description

DEE 200200B-W is an Active Matrix Electrophoretic Display(AM EPD), with interface and a reference system design. The 1.54" active area contains 200x200 pixels. The module is a TFT-array driving electrophoretic display, with integrated circuits including gate buffer, source buffer, MCU interface, timing control logic, oscillator, DC-DC, SRAM, LUT, VCOM. Module can be used in portable electronic devices, such as Electronic Shelf Label (ESL) System.

2 Features

- ◆ 200×200pixels display
- ♦ White reflectance above 30%
- ◆ Contrast ratio above 8:1
- ◆ Ultra wide viewing angle
- ◆ Ultra low power consumption
- ◆ Pure reflective mode
- ♦ Bi-stable display
- ◆ Ultra Low current deep sleep mode
- ◆ On chip display RAM
- ◆ Serial peripheral interface available
- ◆ On-chip oscillator
- ◆ On-chip booster and regulator control for generating VCOM, Gate and Source driving voltage ◆ I²C signal master interface to read external temperature sensor

3 Application


Electronic Shelf Label System,

4 Mechanical Specification

4.1 Dimension

Parameter	Specifications	Unit
Screen Size	1.54	Inch
Display Resolution	200 x 200	Pixel
Active Area	27 x 27	mm
Pixel Pitch	135 x 135	un
Pixel Configuration	Rectangle	
Outline Dimension	31.80 x 37.32 x 1.14(D)	mm
Weight	2.7	g

4.2 Mechanical Drawing of EPD Module

5 Input/output Pin Assignment

9 BUSYN O Busy state output pin 10 RSTN I Reset signal input. Active Low. 11 D/C I Data /Command control pin Note 5-3	No.	Name	I/O	Description	Remark
RESE	1	NC		Do not connect with other NC pins	
4 NC Do not connect with other NC pins 5 VDHR C Positive Source driving voltage 1 6 TSCL O FC Interface to digital temperature sensor Clock pin 7 TSDA I/O FC Interface to digital temperature sensor Data pin 8 BS I Bus Interface selection pin Note 5-4 9 BUSYN O Busy state output pin Note 5-3 10 RSTN I Reset signal input. Active Low. 11 D/C I Data /Command control pin Note 5-1 12 CSB I Chip select input pin Note 5-1 13 SCL I Serial Clock pin (SPI) 14 SDA I Serial Data pin (SPI) 15 VDD P Power Supply for interface logic pins 16 VDD P Power Supply for the chip 17 VSS P Ground 18 VDDD C Core logic power pin VDDD and VSS under all circumstances 19 VPP P Power Supply for OTP Programming 20 VSH C Positive Source driving voltage 21 VGH C Negative Gate driving voltage 22 VSL C Negative Gate driving voltage	2	GDR	О	N-Channel MOSFET Gate Drive Control	
5 VDHR C Positive Source driving voltage 1 6 TSCL O PC Interface to digital temperature sensor Clock pin 7 TSDA I/O PC Interface to digital temperature sensor Data pin 8 BS I Bus Interface selection pin Note 5-4 9 BUSYN O Busy state output pin Note 5-3 10 RSTN I Reset signal input. Active Low. 11 D/C I Data /Command control pin Note 5-2 12 CSB I Chip select input pin Note 5-1 13 SCL I Serial Clock pin (SPI) 14 SDA I Serial Data pin (SPI) 15 VDD P Power Supply for interface logic pins 16 VDD P Power Supply for the chip 17 VSS P Ground 18 VDDD C Core logic power pin VDDD can be regulated internally from VDD. A capacitor should be connected between VDDD and VSS under all circumstances 19 VPP P Power Supply for OTP Programming 20 VSH C Positive Source driving voltage 21 VGH C Positive Gate driving voltage 22 VSL C Negative Gate driving voltage	3	RESE	I	Current Sense Input for the Control Loop	
6 TSCL O FC Interface to digital temperature sensor Clock pin 7 TSDA I/O FC Interface to digital temperature sensor Data pin 8 BS I Bus Interface selection pin Note 5-4 9 BUSYN O Busy state output pin Note 5-3 10 RSTN I Reset signal input. Active Low. 11 D/C I Data /Command control pin Note 5-2 12 CSB I Chip select input pin Note 5-1 13 SCL I Serial Clock pin (SPI) 14 SDA I Serial Data pin (SPI) 15 VDD P Power Supply for interface logic pins 16 VDD P Power Supply for the chip 17 VSS P Ground 18 VDDD C C Core logic power pin VDDD can be regulated internally from VDD. A capacitor should be connected between VDDD and VSS under all circumstances 19 VPP P Power Supply for OTP Programming 20 VSH C Positive Source driving voltage 21 VGH C Positive Gate driving voltage 22 VSL C Negative Gate driving voltage	4	NC		Do not connect with other NC pins	
TSDA I/O IPC Interface to digital temperature sensor Data pin B BS I Bus Interface selection pin Note 5-4 BUSYN O Busy state output pin Note 5-3 Reset signal input. Active Low. I Do/C I Data /Command control pin Note 5-2 CSB I Chip select input pin Note 5-1 SCL I Serial Clock pin (SPI) SDA I Serial Data pin (SPI) VDD P Power Supply for interface logic pins VDD P Power Supply for the chip VDD P Power Supply for the chip VDD C Core logic power pin VDDD can be regulated internally from VDD. A capacitor should be connected between VDDD and VSS under all circumstances VDD VSH C Positive Source driving voltage VGH C Positive Gate driving voltage VGL C Negative Gate driving voltage VGL C Negative Gate driving voltage	5	VDHR	С	Positive Source driving voltage 1	
BUSYN O Busy state output pin Note 5-4 BUSYN O Busy state output pin Note 5-3 10 RSTN I Reset signal input. Active Low. 11 D/C I Data /Command control pin Note 5-2 12 CSB I Chip select input pin Note 5-1 13 SCL I Serial Clock pin (SPI) 14 SDA I Serial Data pin (SPI) 15 VDD P Power Supply for interface logic pins 16 VDD P Power Supply for the chip 17 VSS P Ground Core logic power pin VDDD can be regulated internally from VDD. A capacitor should be connected between VDDD and VSS under all circumstances 19 VPP P P Power Supply for OTP Programming 20 VSH C Positive Source driving voltage 21 VGH C Negative Gate driving voltage 23 VGL C Negative Gate driving voltage	6	TSCL	О	I ² C Interface to digital temperature sensor Clock pin	
9 BUSYN O Busy state output pin Note 5-3 10 RSTN I Reset signal input. Active Low. 11 D/C I Data /Command control pin Note 5-2 12 CSB I Chip select input pin Note 5-1 13 SCL I Serial Clock pin (SPI) 14 SDA I Serial Data pin (SPI) 15 VDD P Power Supply for interface logic pins 16 VDD P Power Supply for the chip 17 VSS P Ground 18 VDDD C Core logic power pin VDDD and VSS under all circumstances 19 VPP P Power Supply for OTP Programming 20 VSH C Positive Source driving voltage 21 VGH C Negative Gate driving voltage 22 VSL C Negative Gate driving voltage	7	TSDA	I/O	I ² C Interface to digital temperature sensor Data pin	
10 RSTN I Reset signal input. Active Low. 11 D/C I Data /Command control pin Note 5-2 12 CSB I Chip select input pin Note 5-1 13 SCL I Serial Clock pin (SPI) 14 SDA I Serial Data pin (SPI) 15 VDD P Power Supply for interface logic pins 16 VDD P Power Supply for the chip 17 VSS P Ground 18 VDDD C C Should be connected between VDDD and VSS under all circumstances 19 VPP P Power Supply for OTP Programming 20 VSH C Positive Source driving voltage 21 VGH C Negative Gate driving voltage 22 VSL C Negative Gate driving voltage	8	BS	I	Bus Interface selection pin	Note 5-4
11 D/C I Data /Command control pin Note 5-2 12 CSB I Chip select input pin Note 5-1 13 SCL I Serial Clock pin (SPI) 14 SDA I Serial Data pin (SPI) 15 VDD P Power Supply for interface logic pins 16 VDD P Power Supply for the chip 17 VSS P Ground 18 VDDD C Core logic power pin VDDD can be regulated internally from VDD. A capacitor should be connected between VDDD and VSS under all circumstances 19 VPP P Power Supply for OTP Programming 20 VSH C Positive Source driving voltage 2 21 VGH C Negative Gate driving voltage 22 VSL C Negative Gate driving voltage	9	BUSYN	О	Busy state output pin	Note 5-3
11 DAC 1 Data/Command control pin 12 CSB I Chip select input pin Note 5-1 13 SCL I Serial Clock pin (SPI) 14 SDA I Serial Data pin (SPI) 15 VDD P Power Supply for interface logic pins 16 VDD P Power Supply for the chip 17 VSS P Ground 18 VDDD C C VDDD can be regulated internally from VDD. A capacitor should be connected between VDDD and VSS under all circumstances 19 VPP P Power Supply for OTP Programming 20 VSH C Positive Source driving voltage 2 21 VGH C Positive Gate driving voltage 22 VSL C Negative Gate driving voltage	10	RSTN	I	Reset signal input. Active Low.	
13 SCL I Serial Clock pin (SPI) 14 SDA I Serial Data pin (SPI) 15 VDD P Power Supply for interface logic pins 16 VDD P Power Supply for the chip 17 VSS P Ground 18 VDDD C C Supply for the regulated internally from VDD. A capacitor should be connected between VDDD and VSS under all circumstances 19 VPP P Power Supply for OTP Programming 20 VSH C Positive Source driving voltage 2 21 VGH C Positive Gate driving voltage 22 VSL C Negative Gate driving voltage 23 VGL C Negative Gate driving voltage	11	D/C	I	Data /Command control pin	Note 5-2
14 SDA I Serial Data pin (SPI) 15 VDD P Power Supply for interface logic pins 16 VDD P Power Supply for the chip 17 VSS P Ground 18 VDDD C Core logic power pin VDDD and VDDD and VDDD and VDDD and VDDD and VSS under all circumstances 19 VPP P Power Supply for OTP Programming 20 VSH C Positive Source driving voltage 2 21 VGH C Positive Gate driving voltage 22 VSL C Negative Gate driving voltage 23 VGL C Negative Gate driving voltage	12	CSB	I	Chip select input pin	Note 5-1
15 VDD P Power Supply for interface logic pins 16 VDD P Power Supply for the chip 17 VSS P Ground 18 VDDD C Core logic power pin VDDD can be regulated internally from VDD. A capacitor should be connected between VDDD and VSS under all circumstances 19 VPP P Power Supply for OTP Programming 20 VSH C Positive Source driving voltage 2 21 VGH C Positive Gate driving voltage 22 VSL C Negative Source driving voltage 23 VGL C Negative Gate driving voltage	13	SCL	I	Serial Clock pin (SPI)	
16 VDD P Power Supply for the chip 17 VSS P Ground 18 VDDD C Core logic power pin VDDD can be regulated internally from VDD. A capacitor should be connected between VDDD and VSS under all circumstances 19 VPP P Power Supply for OTP Programming 20 VSH C Positive Source driving voltage 2 21 VGH C Positive Gate driving voltage 22 VSL C Negative Source driving voltage 23 VGL C Negative Gate driving voltage	14	SDA	I	Serial Data pin (SPI)	
17 VSS P Ground Core logic power pin VDDD can be regulated internally from VDD. A capacitor should be connected between VDDD and VSS under all circumstances 19 VPP P Power Supply for OTP Programming 20 VSH C Positive Source driving voltage 2 21 VGH C Positive Gate driving voltage 22 VSL C Negative Source driving voltage 23 VGL C Negative Gate driving voltage	15	VDD	P	Power Supply for interface logic pins	
To a core logic power pin VDDD can be regulated internally from VDD. A capacitor should be connected between VDDD and VSS under all circumstances 19 VPP Power Supply for OTP Programming 20 VSH C Positive Source driving voltage 2 21 VGH C Positive Gate driving voltage 22 VSL C Negative Source driving voltage 23 VGL C Negative Gate driving voltage	16	VDD	P	Power Supply for the chip	
VDDD can be regulated internally from VDD. A capacitor should be connected between VDDD and VSS under all circumstances VPP Power Supply for OTP Programming VSH C Positive Source driving voltage 2 VGH C Positive Gate driving voltage VSL C Negative Source driving voltage VGL C Negative Gate driving voltage	17	VSS	P	Ground	
20 VSH C Positive Source driving voltage 2 21 VGH C Positive Gate driving voltage 22 VSL C Negative Source driving voltage 23 VGL C Negative Gate driving voltage	18	VDDD	С	VDDD can be regulated internally from VDD. A capacitor should be connected between VDDD and VSS under all	
21 VGH C Positive Gate driving voltage 22 VSL C Negative Source driving voltage 23 VGL C Negative Gate driving voltage	19	VPP	P	Power Supply for OTP Programming	
22 VSL C Negative Source driving voltage 23 VGL C Negative Gate driving voltage	20	VSH	С	Positive Source driving voltage 2	
23 VGL C Negative Gate driving voltage	21	VGH	С	Positive Gate driving voltage	
	22	VSL	С	Negative Source driving voltage	
24 VCOM C VCOM driving voltage	23	VGL	С	Negative Gate driving voltage	
	24	VCOM	С	VCOM driving voltage	

- I = Input Pin, O = Output Pin, I/O = Bi-directional Pin (Input/Output), P = Power Pin, C = Capacitor Pin Note 5-1: This pin is the chip select input connecting to the MCU. The chip is enabled for MCU communication only when CSB is pulled LOW.
- Note 5-2: This pin is Data/Command control pin connecting to the MCU in 4-wire SPI mode. When the pin is pulled HIGH, the data at D1 will be interpreted as data. When the pin is pulled LOW, the data at D1 will be interpreted as command.
- Note 5-3: This pin is Busy state output pin. When Busy is High, the operation of chip should not be interrupted, command should not be sent, e.g., The chip would put Busy pin High when
 - Outputting display waveform
 - Programming with OTP
 - Communicating with digital temperature sensor

Note 5-4: Bus interface selection pin

BS State	MCU Interface
L	4-lines serial peripheral interface(SPI)
Н	3- lines serial peripheral interface(SPI) - 9 bits SPI

6 Electrical Characteristics

6.1 Absolute Maximum Rating

Parameter	Symbol	Rating	Unit
Logic supply voltage	V_{dd}	-0.5 to +4.0	V
Logic Input voltage	V_{IN}	-0.5 to V _{dd} +0.5	V
Logic Output voltage	Vout	-0.5 to V _{dd} +0.5	V

Note: Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Panel DC Characteristics tables.

6.2 Panel DC Characteristics

The following specifications apply for: VSS=0V, VDD=3.0V, T_{OPR} =25°C.

Parameter	Symbol	Condition	Applicable pin	Min.	Тур.	Max.	Unit
Logic supply voltage	V_{dd}	-	VDD	2.4	3.0	3.6	V
High level input voltage	V_{IH}	-	-	$0.8~V_{dd}$	-	-	V
Low level input voltage	V_{IL}	-	-	-	-	0.2 V _{dd}	V
High level output voltage	V_{OH}	IOH = -100uA	-	0.9 V _{dd}	-	-	V
Low level output voltage	V _{OL}	IOL = 100uA	-	-	-	0.1 V _{dd}	V
OTP Program voltage	V_{PP}	-	VPP	-	7.5	-	V
Typical power panel	Ртүр	-	-	-	12	30	mW
Deep sleep mode	PSTPY	-	-	-	3	-	uW
Typical operating current	Iopr_VDD	V _{dd} =3.0V-	-	-	4.0	10	mA

Sleep mode current	Islp_VDD	VDD=3.0V DC/DC OFF No clock No output load Ram data retain	VDD	-	20		uA
Deep sleep mode current	IdslpVDD	VDD=3.0V DC/DC OFF No clock No output load Ram data not retain	VDD	-	1		uA
Operation temperature range	Topr	-	-	0	-	50	°C
Operation illuminance intensity	Е	indoor only	-	ı	ı	2000	lux
Storage temperature range	Тѕт	-	-	-25	1	60	°C
Storage relative humidity	RHst	-	-	30	-	60	%RH

Notes: 1. The typical power is measured with following transition: from horizontal 2 gray scale pattern to vertical 2 gray scale pattern. (Figure 10-2)

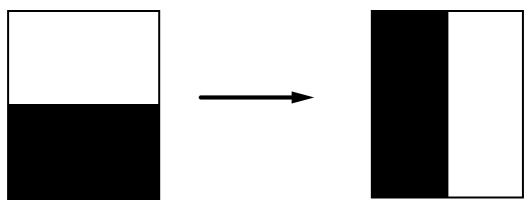


Figure 10-2 The typical power consumption measure pattern

- 2. The deep sleep power is the consumed power when the panel controller is in deep sleep mode.
- 3. The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by OED.

6.3 Panel DC Characteristics(Driver IC Internal Regulators)

The following specifications apply for: VSS=0V, VDD =3.0V, T_{OPR} =25°C.

Parameter	Symbol	Condition	Applicable pin	Min.	Typ.	Max.	Unit
VCOM output voltage	VCOM	-	VCOM	-3.0	-	-0.2	V

6.4 Panel AC Characteristics

6.4.1 MCU Interface Selection

MCU interface consist of 2 data/command pins and 3 control pins. The pin assignment at different interface mode is summarized in Table 10-4-1. Different MCU mode can be set by hardware selection on BS pins. The display panel only supports 4-wire SPI or 3-wire SPI interface mode.

Pin Name	Data/Connnand Interface		Pin Name Data/Connnand Interface Contr			Control Signal	
Bus interface	SDA	SCL	CSB	D/C	RSTN		
4-wire SPI	SDIN	SCLK	CSB	D/C	RSTN		
3-wire SPI	SDIN	SCLK	CSB	L	RSTN		

Table 10-4-1: MCU interface assignment under different bus interface mode

6.4.2 MCU Serial Interface (4-wire SPI)

The serial interface consists of serial clock SCLK, serial data SDIN, D/C, CSB. In 4-wire SPI mode, SCL acts as SCLK, SDA acts as SDIN.

Function	CSB	D/C	SCLK
Write command	L	L	↑
Write data	L	Н	↑

Note: ↑ stands for rising edge of signal

Table 10-4-2: Control pins of 4-wire Serial interface

SDIN is shifted into an 8-bit shift register on every rising edge of SCLK in the order of D7, D6, ... D0. D/C is sampled on every eighth clock and the data byte in the shift register is written to the Graphic Display Data RAM (RAM) or command register in the same clock.

Under serial mode, only write operations are allowed.

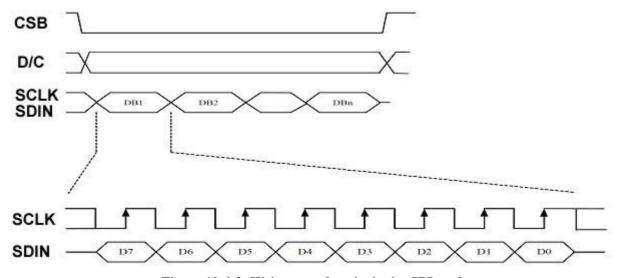


Figure 10-4-2: Write procedure in 4-wire SPI mode

6.4.3 MCU Serial Interface (3-wire SPI)

The 3-wire serial interface consists of serial clock SCLK, serial data SDIN and CSB. In 3-wire SPI mode, SCL acts as SCLK, SDA acts as SDIN.

The operation is similar to 4-wire serial interface while D/C pin is not used. There are altogether 9-bits will be shifted into the shift register on every ninth clock in sequence: D/C bit, D7 to D0 bit. The D/C bit (first bit of the sequential data) will determine the following data byte in the shift register is written to the Display Data RAM (D/C bit = 1) or the command register (D/C bit = 0).

Under serial mode, only write operations are allowed.

Function	CSB	D/C	SCLK
Write	L	Tie	1
command			
Write data	L	LOWTie	1

Note: ↑ stands for rising edge of signal LOW

Table 10-4-3: Control pins of 3-wire Serial interface

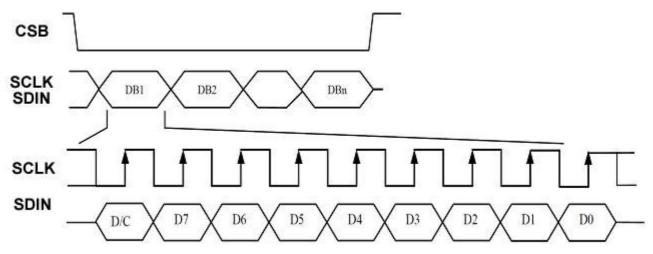


Figure 10-4-3: Write procedure in 3-wire SPI mode

6.4.4 Interface Timing

The following specifications apply for: VSS=0V, VDD =3.0V, T_{OPR} =25°C.

Symbol	Parameter	Test Condition	Applicable pin	Min.	Typ.	Max.	Unit
Fosc	Internal Oscillator frequency	VDD =2.4 to 3.3V	CL	0.95	1	1.05	MHz

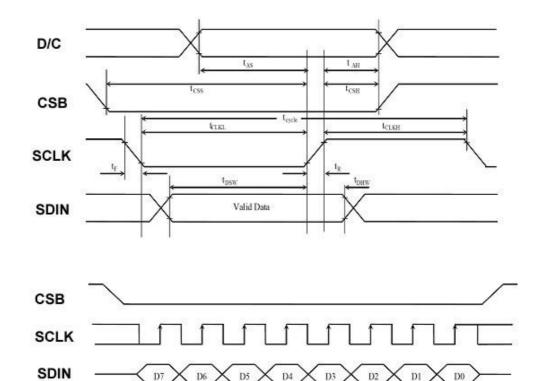


Figure 10-4-4: Serial interface characteristics

(V	VSS =	2 4V to	3 3V	$T_{ODD} =$	25°C	CL=20pF)
١	. v aa -	v 55 —	2.7 V IC	, J.J V ,	I OPR —	23 C,	CL-20pi)

Symbol	Parameter	Min.	Тур.	Max.	Unit
tcycle	Clock Cycle Time	250	-	-	ns
tas	Address Setup Time	150	-	-	ns
tah	Address Hold Time	150	-	-	ns
tcss	Chip Select Setup Time	120	-	-	ns
tcsh	Chip Select Hold Time	60	-	-	ns
tosw	Write Data Setup Time	50	-	-	ns
tdhw	Write Data Hold Time	15	-	-	ns
tclkl	Clock Low Time	100	-	-	ns
tclkh	Clock High Time	100	-	-	ns
t_R	Rise Time [20% ~ 80%]	-	-	15	ns
t_{F}	Fall Time [20% ~80%]	-	-	15	ns

Table 10-4-4: Serial Interface Timing Characteristics

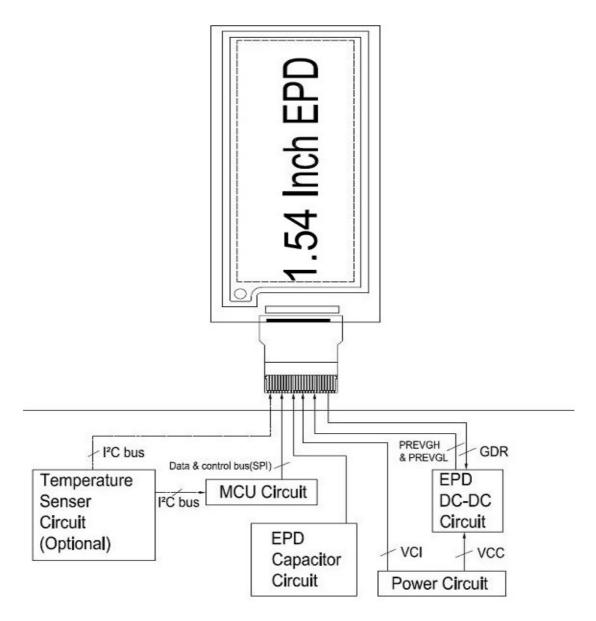
7 Optical Specification

Measurements are made with that the illumination is under an angle of 45 degrees, the detection is perpendicular unless otherwise specified.

			Values				
Symbol	Parameter	Conditions	Min.	Тур.	Max	Units	Notes
R	White Reflectivity	White	30	35	-	%	11-1
CR	Contrast Ratio		8:1	10:1	-	-	11-2
White△L 24h	Reduce		-	≪4	-	-	-
Tupdate	Image update time	at 25 °C	-	2100	-	ms	-

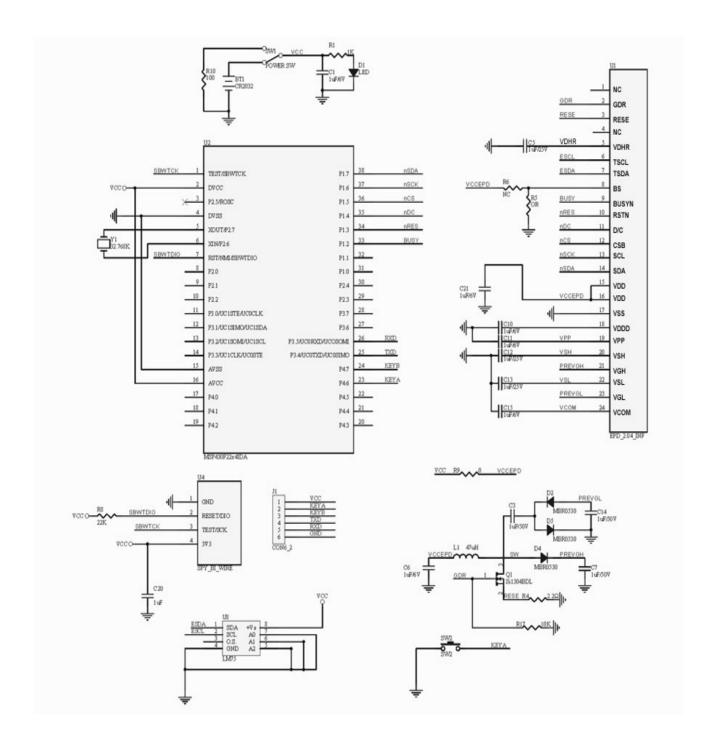
Notes: 11-1. Luminance meter: Eye-One Pro Spectrophotometer.

11-2. CR=Surface Reflectance with all white pixel/Surface Reflectance with all black pixels.


8 Handling, Safety, and Environment Requirements

- 1. The EPD Panel / Module is manufactured from fragile materials such as glass and plastic, and may be broken or cracked if dropped. Please handle with care. Do not apply force such as bending or twisting to the EPD panel
- 2. The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components.
- 3. Do not apply pressure to the EPD panel in order to prevent damaging it
- 4. Do not connect or disconnect the interface connector while the EPD panel is in operation
- 5. Do not stack the EPD panels / Modules.
- 6. Keep the EPD Panel / Module in the specified environment and original packing boxes when storage in order to avoid scratching and keep original performance.
- 7. Do not disassemble or reassemble the EPD panel
- 8. Use a soft dry cloth without chemicals for cleaning. Please don't press hard for cleaning because the surface of the protection sheet film is very soft and without hard coating. This behavior would make dent or scratch on protection sheet
- 9. Please be mindful of moisture to avoid its penetration into the EPD panel, which may cause damage during operation
- 10. It's low temperature operation product. Please be mindful the temperature different to make frost or dew on the surface of EPD panel. Moisture may penetrate into the EPD panel because of frost or dew on surface of EPD panel, and makes EPD panel damage.
- 11. High temperature, high humidity, sunlight or fluorescent light may degrade the EPD panel's performance. Please do not expose the unprotected EPD panel to high temperature, high humidity, sunlight, or fluorescent for long periods of time. Please store the EPD panel in controllable environment of warehouse and original package. Without sunlight, without condensation a temperature range of 15°C to 35°C, and humidity from 30%RH to 60%RH.

9 Reliability Test


No.	Test	Condition	Method	Remark
1	HighTemperature Operation	T = +50°C, RH = 30% for 168 hrs	IEC 60 068- 2-2Bp	At the end of the test, electrical, mechanical, and optical specifications shall be satisfied.
2	Low- Temperature Operation	T = 0°C for 168 hrs	IEC 60 068- 2-2Ab	At the end of the test, electrical, mechanical, and optical specifications shall be satisfied.
3	High- Temperature Storage	T = +70°C, RH=23% for 168 hrs	IEC 60 068- 2-2Bp	At the end of the test, electrical, mechanical, and optical specifications shall be satisfied.
4	Low- Temperature Storage	T = -25°C for 168 hrs	IEC 60 068- 2-1Ab	At the end of the test, electrical, mechanical, and optical specifications shall be satisfied.
5	High- Temperature, HighHumidity Operation	T = +40°C, RH = 90% for 168 hrs	IEC 60 068- 2-3CA	At the end of the test, electrical, mechanical, and optical specifications shall be satisfied.
6	High Temperature, High- Humidity Storage	T = +60°C, RH=80% for 168hrs	IEC 60 068- 2-3CA	At the end of the test, electrical, mechanical, and optical specifications shall be satisfied.
7	Thermal Shock	1 cycle:[-25°C 30min]→[+70 °C 30 min] : 100 cycles	IEC 60 068- 2-14	At the end of the test, electrical, mechanical, and optical specifications shall be satisfied.
8	Package Vibration	1.04G, Frequency: 10~500Hz Direction: X,Y,Z Duration: 1 hours in each direction	Full packed for shipment	At the end of the test, electrical, mechanical, and optical specifications shall be satisfied.
9	Package Drop Impact	Drop from height of 122 cm on concrete surface. Drop sequence: 1 corner, 3edges, 6 faces One drop for each	Full packed for shipment	At the end of the test, electrical, mechanical, and optical specifications shall be satisfied.
10	Electrostatic Effect (nonoperating)	Machine model +/- $250V$, 0Ω , $200pF$	IEC 62179, IEC 62180	At the end of the test, electrical, mechanical, and optical specifications shall be satisfied.

10 Block Diagram

Driver PCBA

11 Typical Application Circuit with SPI Interface

